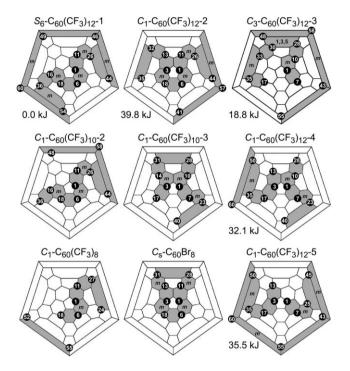
X-ray structure and DFT study of C_1 - $C_{60}(CF_3)_{12}$. A high-energy, kinetically-stable isomer prepared at 500 °C[†]

Ivan E. Kareev,^{*ab*} Natalia B. Shustova,^{*c*} Dmitry V. Peryshkov,^{*c*} Sergey F. Lebedkin,^{*b*} Susie M. Miller,^{*c*} Oren P. Anderson,^{*c*} Alexey A. Popov,^{*sd*} Olga V. Boltalina^{*sc*} and Steven H. Strauss^{*sc*}

Received (in Berkeley, CA, USA) 30th November 2006, Accepted 21st February 2007 First published as an Advance Article on the web 19th March 2007 DOI: 10.1039/b617489b

The title compound, prepared from C_{60} and CF_3I at 500 °C, exhibits an unusual fullerene(X)₁₂ addition pattern that is 40 kJ mol⁻¹ less stable than the previously reported $C_{60}(CF_3)_{12}$ isomer.


Perfluoroalkylfullerenes (C_{60+x}(R_f)_n) have become one of the broadest classes of well-characterized C_{60+x}Y_n compounds, with n = 2–18. Twenty X-ray structures have appeared since mid-2005,† some of which exhibit little or no disorder and have esd's for cage C–C distances as low as 0.0010–0.0016 Å.^{1,2} More than twenty additional derivatives have had their structures elucidated by ¹⁹F NMR spectroscopy and DFT calculations and several more have not yet had their structures determined.^{3,4} Unlike most well-characterized C_{60,70}Y_n derivatives (Y = H, F, Cl, Br, R, Ar), the addition patterns observed for most of the C_{60,70}(R_f)_n derivatives (R_f = CF₃, C₂F₅) are asymmetric. The only exceptions among the compounds characterized by X-ray crystallography are C₈-C₇₀-(CF₃)₈,⁵ C₂-C₆₀(CF₃)₁₀,⁶ and S₆-C₆₀(CF₃)₁₂ (C₆₀(CF₃)₁₂-1).² The last compound was reported to be formed in 84% yield in a sealed-ampoule reaction of C₆₀ and CF₃I at 440 °C for 2 days.²

We now report that the reaction of C_{60} and CF_3I in a continuous flow apparatus⁷ at 500 °C produced not just one but several isomers of $C_{60}(CF_3)_{12}$.[‡] One asymmetric isomer has been isolated with *ca.* 90% purity and its structure has been determined by X-ray crystallography.§ The compound $C_{60}(CF_3)_{12}$ -2, shown as a Schlegel diagram in Fig. 1 (top center), crystallized from benzene with two independent fullerenes and three solvent molecules in the asymmetric unit. The independent molecules exhibit only minor differences in CF₃ conformations with respect to the C₆₀ cage. Some F atom thermal ellipsoids indicate substantial libration and/or disorder, but only one CF₃ group could be satisfactorily modeled assuming a simple two-site disorder.

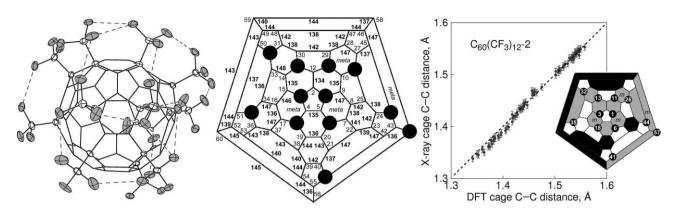
A drawing of one of the $C_{60}(CF_3)_{12}$ -2 molecules showing all F-atom and some C-atom thermal ellipsoids is shown in Fig. 2. The CF_3 -group addition pattern is a single ribbon of

^aInstitute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia

^bForschungszentrum Karlsruhe, İnstitute for Nanotechnology, Karlsruhe 76021, Germany

Fig. 1 Schlegel diagrams for relevant $C_{60}(CF_3)_n$ derivatives (n = 8, 10, 12) and for $C_{60}Br_8$. For the five $C_{60}(CF_3)_{12}$ isomers, the relative ΔH_{f° values are shown in kJ mol⁻¹. Except for the three compounds $C_{60}(CF_3)_{12}$ -3, -4, and -5, which are not yet known experimentally (but may be present in our mixtures of $C_{60}(CF_3)_{12}$), the compounds shown have been structurally characterized by single-crystal X-ray diffraction. The C_3 - $C_{60}(CF_3)_{12}$ -3 isomer is the lowest energy isomer of this composition after the S_6 isomer.

11 edge-sharing *meta-* and *para-*C₆(CF₃)₂ hexagons (by definition, each shared edge has one sp³ and one sp² C atom); the molecule is C_1 - $p^3mpmpmpp$ -C₆₀(CF₃)₁₂ or 1,3,6,11,13,18,26,32,35,41,44,57-C₆₀(CF₃)₁₂ (IUPAC locants⁸). A single ribbon of edge-sharing *m*-and/or *p*-C₆(CF₃)₂ hexagons (as just defined) is the most common addition pattern for C_{60+x}(R₁)_n derivatives,[†] although a ribbon plus an isolated *p*-C₆(CF₃)₂ hexagon,^{9,10} two ribbons,⁴ a loop,² two loops,⁶ a loop plus an isolated hexagon,⁴ and a loop plus a ribbon⁴ are also known (each shared edge of a loop of edge-shared C₆(CF₃)₂ hexagons must also have one sp³ and one sp² cage C atom; therefore, C₆₀(CF₃)₁₂-2 and C₆₀(CF₃)₁₂-1 and C₆₀Br₈ are *single-loop isomers*).


By definition, a fullerene always has 12 pentagons.¹¹ For compounds with more than 12 R_f groups (e.g., $C_{70}(CF_3)_{14}$,

^cDepartment of Chemistry, Colorado State University, Fort Collins, CO 80523, USA. E-mail: steven.strauss@colostate.edu;

ovbolt@lamar.colostate.edu

^dChemistry Department, Moscow State University, Moscow 119992, Russia. E-mail: popov@phys.chem.msu.ru

[†] Electronic supplementary information (ESI) available: Complete list of references for X-ray structures of fullerene(R_{f})_n compounds (n > 1); IUPAC-numbered and thermal ellipsoid plots; table of DFT relative $\Delta H_{\rm f}$ values for numerous $C_{60}({\rm CF}_3)_{12}$ isomers. See DOI: 10.1039/b617489b

Fig. 2 (left) Drawing of the ^{f,s}A isomer of C_{1-p}^{3} mpmpmpmp- $C_{60}(CF_3)_{12}$ in (^{f,s}C- $C_{60}(CF_3)_{12}$)(^{f,s}A- $C_{60}(CF_3)_{12}$)·3C₆H₆ (50% probability ellipsoids for the 12 CF₃ groups and the cage C atoms to which they are attached; F atoms are highlighted). The F…F contacts between CF₃ groups that share the same hexagon or pentagon are shown as dashed lines and range from 2.558(2) to 2.857(2) Å. (middle left) Schlegel diagram showing cage C atom numbering and all C(sp²)–C(sp²) distances in pm (the distances are known to better than ± 1 pm since $3\sigma = 0.6$ pm). (middle right) Plot of X-ray vs. DFT-optimized cage C–C distances for $C_{60}(CF_3)_{12}$ -2 (the error bars are $\pm 3\sigma$). (right) Schlegel diagram showing the seven remaining C(sp²)₆ hexagons in $C_{60}(CF_3)_{12}$ -2.

 $C_{70}(CF_3)_{16}$, and $C_{70}(CF_3)_{18}$,^{12,13} some pentagons must have more than one substituent. However, of the *ca.* 40 well-characterized $C_{60+x}(R_f)_n$ compounds with $n \leq 12$, $C_{60}(CF_3)_{12}$ -2 is only the second example with a 1,3- $C_5(R_f)_2$ pentagon (the first was $C_{60}(CF_3)_{10}$ -3,⁷ shown in Fig. 1), and it is the first example with two 1,3- $C_5(R_f)_2$ pentagons. The C_1 - $p^3mpmpmp$ ribbon in $C_{60}(CF_3)_{10}$ -2 is related to the C_1 - $p^3mpmpmpn$ ribbon in $C_{60}(CF_3)_{12}$ -2 except that the final -mp fragment in $C_{60}(CF_3)_{10}$ -2, unlike the third -mp- fragment in $C_{12}(CF_3)_{12}$ -2, involves a m- $C_6(CF_3)_2$ hexagon that does not lead to the formation of two 1,3- $C_5(CF_3)_2$ pentagons.

The estimated standard deviation for all 90 cage C–C bonds is 0.002 Å, making a meaningful analysis of the cage $C(sp^2)$ – $C(sp^2)$ bond distances possible. These are shown, to the nearest pm (for clarity), in the Schlegel diagram in Fig. 2. The ten shortest bonds range from 1.338(2) (C2–C12) to 1.366(2) Å (C27–C45), and six of these are pent–hex junctions (*PHJs*) that have been shortened from *ca.* 1.45 ± 0.01 Å in C_{60}^{14} to 1.35 ± 0.01 Å in $C_{60}(CF_3)_{12}$ -2. The hex–hex junction (*HHJ*) C2–C12 and the *PHJ* C4–C5, 1.345(2) Å, are unique in that they are isolated double bonds. Although double bonds on *PHJs* are normally considered destabilizing, each *pmp* or p^3 fragment in a $C_{60}(CF_3)_n$ derivative with a ribbon of edge-sharing $C_6(CF_3)_2$ hexagons *requires* that at least one very short cage C–C bond be located in a pentagon. For this reason, the isomer $C_{60}(CF_3)_{12}$ -1, with an S_6 -*pmpmpmpmpmpm* loop, also has six double bonds in pentagons.²

Of the seven remaining $C(sp^2)_6$ hexagons in $C_{60}(CF_3)_{12}$ -2, six are fused into a curved benzo[*c*]picene (zig-zag polyhexacene) fragment,¹⁵ as shown in Fig. 2.

We have calculated the relative $\Delta H_{\rm f}$ values for more than 10000 isomers of $C_{60}({\rm CF}_3)_{12}$ at the AM1 level of theory followed by full optimization of the most stable isomers at the DFT level of theory (PRIRODA package,¹⁶ PBE functional,¹⁷ TZ2P Gaussian basis set). All isomers that can be made (i) by a series of 1,4 additions of two CF₃ groups (which leads to interior *m*-C₆(CF₃)₂ hexagons if the ribbon has more than four CF₃ groups), (ii) by adding three 1,4 additions plus a skew-pentagonal pyramid (*SPP*) unit of six CF₃ groups (as in 1,6,9,12,15,18-C₆₀(CF₃)₆¹⁸), (iii) by adding two *SPP* units, or (iv) by adding a *p*-C₆(CF₃)₂ hexagon to C_{2} -(p^3m^2 -loop)²-C₆₀(CF₃)₁₀⁶ were considered. (These constraints are based on the addition-pattern motifs observed for more than forty wellcharacterized fullerene(CF_3)_n derivatives; it is possible that other stable addition-pattern motifs will be discovered in the future.) Ten isomers were found to have relative $\Delta H_{\rm f}$ values of 0.0-39.8 kJ mol⁻¹, and five of these are shown in Fig. 1. There are two additional isomers (not shown) with $\Delta H_{\rm f}$ values of ca. 20 kJ mol⁻¹ that, like $C_{60}(CF_3)_{12}$ -3, have a 1,3,5- $C_6(CF_3)_3$ hexagon. The isomers $C_{60}(CF_3)_{12}$ -4 and -5, which are predicted to be more stable than $C_{60}(CF_3)_{12}$ -2, each have one $1,3-C_5(CF_3)_2$ pentagon. The fifth isomer, like $C_{60}(CF_3)_{12}$, has a C_1 -p³mpmpmpmp ribbon and is structurally related to $C_{60}(CF_3)_{10}$ -2. The fourth isomer is composed of two ribbons, a p^3mp ribbon and a pmpmp ribbon. The C_{2h} addition-pattern isomer with two SPP fragments on opposite poles has a relative $\Delta H_{\rm f}$ value of 32.6 kJ mol⁻¹. Single point B3LYP/6-31G*//PBE/TZ2P calculations only changed the energy difference between the S_6 and $C_{60}(CF_3)_{12}$ -2 isomers from 39.8 to 36.6 kJ mol⁻¹. Furthermore, a plot of the 90 X-ray vs. PBE-DFT cage C-C distances is shown in Fig. 2. The correlation to within $\pm 3\sigma$ is very good to excellent.

The compounds in Fig. 1 have different addition patterns but many similarities that may not be clear at first: (i) $C_{60}Br_8$ and $C_{60}(CF_3)_{12}$ -2 have six addition positions in common; (ii) $C_{60}(CF_3)_{10}$ -2 and $C_{60}(CF_3)_{12}$ -1 have eight common CF₃ groups, as do $C_{60}(CF_3)_{10}$ -3 and $C_{60}(CF_3)_{12}$ -4; (iii) the p^3mp ribbon in $C_{60}(CF_3)_{10}$ -3 as well as to C_1 - $C_{70}(CF_3)_{12}$ -4, $C_{60}(CF_3)_{12}$ -5 is closely related to $C_{60}(CF_3)_{12}$ -1 in that they have ten CF₃ groups in common. Moving the CF₃ groups on C3 and C13 in $C_{60}(CF_3)_{12}$ -1.

The compound $C_{60}(CF_3)_{12}$ -2 is predicted to be nearly 40 kJ mol⁻¹ less stable than $C_{60}(CF_3)_{12}$ -1, which is the most stable isomer. In all previous computational studies of $C_{60+x}(CF_3)_n$ derivatives, all well-characterized isomers of a given composition that were prepared at or above 400 °C were within the first 15 kJ mol⁻¹ of the most stable isomer, and all but one were within the first 10 kJ mol⁻¹.^{3,4,6,18-20} We have proposed that $C_{60+x}(CF_3)_n$ derivatives can undergo facile isomerization above 400 °C.^{3,7} This has not yet been proven, however, and the extent to which the relative amounts of various isomers of a given composition in a high-temperature product mixture are controlled by

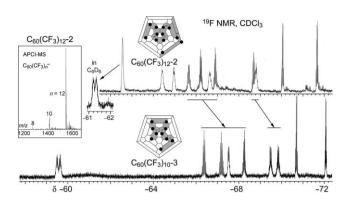


Fig. 3 Fluorine-19 NMR spectra. The boxed inset is the APCI mass spectrum of an HPLC purified sample of $C_{60}(CF_3)_{12}$ -2.

thermodynamic and/or kinetic factors is not clear in any study published to date. The isolation of $C_{60}(CF_3)_{12}$ -2, which is predicted to be far from equilibrium with respect to isomerization, is the first unambiguous experimental evidence that kinetically-stable $C_{60+x}(CF_3)_n$ isomers are possible, even at 500 °C. Its further study may lead to new insights about the rates and mechanisms of (i) multiple radical additions to fullerenes as well as (ii) hightemperature $C_{60+x}(CF_3)_n$ isomerizations.

Since $C_{60}(CF_3)_{12}$ -1, -2, -3, -4, and -5 all have six *PHJ* double bonds, their significantly different DFT-predicted ΔH_f values must be attributed to other electronic and/or steric factors. The S_6 isomer has eight remaining $C(sp^2)_6$ hexagons in two nearly-isolated triphenylene fragments on opposite poles, each of which has three vinyl-like moieties. On the other hand, $C_{60}(CF_3)_{12}$ -2 has the benzo[*c*]picene fragment, a $C(sp^2)_6$ hexagon, a $C(sp^2)_5$ pentagon, plus a number of vinyl-like moieties. The difference in energy for the two isomers may be due to (i) different strain energies in the polycyclic hydrocarbon fragments, (ii) different steric repulsions between proximate F atoms, and (iii) differences in the degree to which the CF₃ groups are eclipsed or staggered with respect to the cage. All of these possibilities are being explored.

The ¹⁹F NMR spectra of $C_{60}(CF_3)_{12}$ -2 and $C_{60}(CF_3)_{10}$ -3 in CDCl₃ are shown in Fig. 3. The multiplets are either quartets, quartets of quartets (some are apparent septets), or unresolved multiplets, as found for a variety of $C_{60+x}(CF_3)_n$ compounds.^{3,4,7} The observed^{6,7} J_{FF} coupling between CF₃ groups sharing the same hexagon or, in the case of these two compounds, the same pentagon, is primarily mediated by the overlap of lone pairs of electrons on proximate CF₃ F atoms (*i.e.*, through-space Fermicontact coupling), as previously described.^{3,4,7} A complete analysis of δ vs. (i) addition pattern and (ii) CF₃ conformation for these and other $C_{60+x}(CF_3)_n$ derivatives will be reported in the near future.

This work was supported by the Russian Foundation for Basic Research (06-03-33147) and the Civilian Research and Development Foundation (RUC2-2830-MO-06). We thank Prof. M. Kappes for his generous support of this work.

Notes and references

[‡] Synthesis of C₆₀(CF₃₎₁₂-2: The procedure published in 2005⁷ was used with the following changes: 100 mg C₆₀, 500 °C, 1 h. The combined crude products from several preparations (600 mg total) were processed by HPLC (Cosmosil Buckyprep column; 18 mL heptane min⁻¹).⁷ The 12.8 min fraction was collected and reprocessed three times. Further HPLC

purification resulted in 3–5 mg of *ca.* 90% pure $C_{60}(CF_3)_{12}$ -2 (see APCI mass spectrum⁴ in Fig. 3). ¹⁹F NMR (376.48 MHz, CDCl₃, 25 °C, C₆F₆ int. std. (δ –164.9)): -62.6, unresolved multiplet (*um*), int. 2; -64.4, *um*, int. 1; -65.0, unresolved *um*, int. 1; -65.6, apparent septet (*as*), J = 14 Hz, int. 1; -66.2, *as*, J = 12 Hz, int. 1; -66.6, *um*, int. 1; -66.9, *as*, J = 12 Hz, int. 1; -66.9, *um*, int. 1; -70.0, quartet (*q*), J = 13 Hz, int. 1; -71.7, *q*, J = 11 Hz, int. 1. § Crystal data. Bruker Kappa APEX II CCD diffractometer (Mo-K $\alpha \lambda = 0.71073$ Å; graphite monochromator; T = 100(2) K). Empirical absorption correction was applied using SADABS.²¹ Structures were solved using

correction was applied using SADABS.²¹ Structures were solved using direct methods and refined using full-matrix least squares on F^2 using SHELXTL.²² For 1,3,6,11,13,18,26,32,35,41,44,57-C₆₀(CF₃)₁₂·1.5C₆H₆, C₈₁H₉F₃₆, M = 1665.88, triclinic, space group PI (No. 2), a = 13.3366(3), b = 19.2741(5), c = 22.5169(6) Å, $\alpha = 86.810(2)^\circ$, $\beta = 88.954(2)^\circ$, $\gamma = 85.636(2)^\circ$, V = 5761.7(3) Å³, Z = 4, $\rho_{calc} = 1.920$ Mg m⁻³, $\mu = 0.194$ mm⁻¹, $2\theta_{max} = 65.16^\circ$, final *R* indices ($I > 2\sigma(I)$): $R_1 = 0.056$, $wR_2 = 0.157$ (262111 total reflections, 41972 unique reflections (28477 with $I > 2\sigma(I)$), $R_{int} = 0.0516$. CCDC 629289. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b617489b

- I. E. Kareev, S. F. Lebedkin, S. M. Miller, O. P. Anderson, S. H. Strauss and O. V. Boltalina, *Acta Crystallogr., Sect. E*, 2006, 62, 01498.
- 2 S. I. Troyanov, A. Dimitrov and E. Kemnitz, Angew. Chem., Int. Ed., 2006, 45, 1971.
- 3 E. I. Dorozhkin, D. V. Ignat'eva, N. B. Tamm, A. A. Goryunkov, P. A. Khavrel, I. N. Ioffe, A. A. Popov, I. V. Kuvychko, A. V. Streletskiy, V. Y. Markov, J. Spandl, S. H. Strauss and O. V. Boltalina, *Chem.-Eur. J.*, 2006, **12**, 3876.
- 4 N. B. Shustova, I. V. Kuvychko, R. D. Bolskar, K. Seppelt, S. H. Strauss, A. A. Popov and O. V. Boltalina, *J. Am. Chem. Soc.*, 2006, **128**, 15793.
- 5 A. A. Goryunkov, E. I. Dorozhkin, D. V. Ignat'eva, L. N. Sidorov, E. Kemnitz, G. M. Sheldrick and S. I. Troyanov, *Mendeleev Commun.*, 2005, 225.
- 6 I. E. Kareev, S. F. Lebedkin, A. A. Popov, S. M. Miller, O. P. Anderson, S. H. Strauss and O. V. Boltalina, *Acta Crystallogr., Sect. E*, 2006, 62, 01501.
- 7 I. E. Kareev, I. V. Kuvychko, S. F. Lebedkin, S. M. Miller, O. P. Anderson, K. Seppelt, S. H. Strauss and O. V. Boltalina, J. Am. Chem. Soc., 2005, 127, 8362.
- W. H. Powell, F. Cozzi, G. P. Moss, C. Thilgen, R. J. R. Hwu and A. Yerin, *Pure Appl. Chem.*, 2002, 74, 629.
 I. E. Kareev, I. V. Kuvychko, S. F. Lebedkin, S. M. Miller, O. P.
- 9 I. E. Kareev, I. V. Kuvychko, S. F. Lebedkin, S. M. Miller, O. P. Anderson, S. H. Strauss and O. V. Boltalina, *Chem. Commun.*, 2006, 308.
- 10 I. E. Kareev, N. B. Shustova, B. S. Newell, S. M. Miller, O. P. Anderson, S. H. Strauss and O. V. Boltalina, *Acta Crystallogr., Sect. E*, 2006, 62, 03154.
- 11 P. W. Fowler and D. E. Manolopoulous, An Atlas of Fullerenes, Clarendon, Oxford, 1995.
- 12 A. A. Goryunkov, D. V. Ignat'eva, N. B. Tamm, N. N. Moiseeva, I. N. Ioffe, S. M. Avdoshenko, V. Y. Markov, L. N. Sidorov, E. Kemnitz and S. I. Troyanov, *Eur. J. Org. Chem.*, 2006, 2508.
- 13 S. M. Avdoshenko, A. A. Goryunkov, I. N. Ioffe, D. V. Ignat'eva, L. N. Sidorov, P. Pattison, E. Kemnitz and S. I. Troyanov, *Chem. Commun.*, 2006, 2463.
- 14 M. M. Olmstead, A. de Bettencourt-Dias, H. M. Lee, D. Pham and A. L. Balch, *Dalton Trans.*, 2003, 3227.
- 15 J.-I. Aihara, J. Chem. Soc., Perkin Trans. 2, 1994, 971.
- 16 D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.
- 17 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- 18 I. E. Kareev, N. B. Shustova, I. V. Kuvychko, S. F. Lebedkin, S. M. Miller, O. P. Anderson, A. A. Popov, S. H. Strauss and O. V. Boltalina, *J. Am. Chem. Soc.*, 2006, **128**, 12268.
- 19 E. I. Dorozhkin, D. V. Ignat'eva, N. B. Tamm, N. V. Vasilyuk, A. A. Goryunkov, S. M. Avdoshenko, I. N. Ioffe, L. N. Sidorov, P. Pattison, E. Kemnitz and S. I. Troyanov, *J. Fluorine Chem.*, 2006, 127, 1344.
- 20 A. A. Goryunkov, I. N. Ioffe, I. V. Kuvychko, T. S. Yankova, V. Y. Markov, A. V. Streletskii, D. L. Dick, L. N. Sidorov, O. V. Boltalina and S. H. Strauss, *Fullerenes Nanotubes Carbon Nanostruct.*, 2004, **12**, 181–185.
- G. M. Sheldrick, SADABS A program for area detector absorption corrections.
- 22 G. M. Sheldrick, SHELXTL (2004), Bruker AXS, Madison, WI.